Q1	$\mathrm{f}(t)=k t^{3}(2-t) \quad 0<t \leq 2$			
(i)	$\begin{aligned} & \int_{0}^{2} k t^{3}(2-t) \mathrm{d} t=1 \\ & \therefore\left[k\left(\frac{2 t^{4}}{4}-\frac{t^{5}}{5}\right)\right]_{0}^{2}=1 \\ & \therefore k\left(8-\frac{32}{5}\right)-0=1 \\ & \therefore k \times \frac{8}{5}=1 \quad \therefore k=\frac{5}{8} \end{aligned}$	M1 E1	Integral of $\mathrm{f}(t)$, including limits (possibly implied later), equated to 1. Convincingly shown. Beware printed answer.	2
(ii)	$\begin{aligned} & \frac{\mathrm{d} f}{\mathrm{~d} t}=\frac{5}{8}\left(6 t^{2}-4 t^{3}\right)=0 \\ & \therefore 6 t^{2}-4 t^{3}=0 \\ & \therefore 2 t^{2}(3-2 t)=0 \\ & \therefore t=(0 \text { or }) \frac{3}{2} \end{aligned}$	M1 A1	Differentiate and set equal to zero. c.a.o.	2
(iii)	$\begin{aligned} \mathrm{E}(T) & =\int_{0}^{2} \frac{5}{8} t^{4}(2-t) \mathrm{d} t \\ & =\left[\frac{5}{8}\left(\frac{2 t^{5}}{5}-\frac{t^{6}}{6}\right)\right]_{0}^{2}=\frac{5}{8} \times\left(\frac{64}{5}-\frac{64}{6}\right)=\frac{4}{3} \\ \mathrm{E}\left(T^{2}\right) & =\int_{0}^{2} \frac{5}{8} t^{5}(2-t) \mathrm{d} t \\ & =\left[\frac{5}{8}\left(\frac{2 t^{6}}{6}-\frac{t^{7}}{7}\right)\right]_{0}^{2}=\frac{5}{8} \times\left(\frac{128}{6}-\frac{128}{7}\right)=\frac{40}{21} \\ \operatorname{Var}(T) & =\frac{40}{21}-\left(\frac{4}{3}\right)^{2}=\frac{120-112}{63}=\frac{8}{63} \end{aligned}$	M1 A1 M1 M1 A1	Integral for $\mathrm{E}(T)$ including limits (which may appear later). Integral for $\mathrm{E}\left(T^{2}\right)$ including limits (which may appear later). Convincingly shown. Beware printed answer.	5
(iv)	$\bar{T} \sim N\left(\frac{4}{3}, \frac{8}{63 n}\right)$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \end{aligned}$	Normal distribution. Mean. ft c's E(T). Correct variance.	3

(v)	$\begin{aligned} & n=100, \quad \bar{t}=\frac{145 \cdot 2}{100}=1 \cdot 452 \\ & s_{n-1}^{2}=\frac{223 \cdot 41-100 \times 1 \cdot 452^{2}}{99}=0 \cdot 12707 \end{aligned}$ CI is given by $1.452 \pm$ $=1.452 \pm 0.0698=(1.382,1.522)$ Since $\mathrm{E}(T)(=4 / 3)$ lies outside this interval it seems the model may not be appropriate.	B1 M1 B1 M1 A1 E1	Both mean and variance. Accept sd $=0 \cdot 3565$ $\mathrm{ft} \mathrm{c}^{\prime} \mathrm{s} \bar{t} \pm$. ft c's $S_{n 1}$. c.a.o. Must be expressed as an interval.	6
				18

Q2	$\begin{aligned} & C a \sim \mathrm{~N}\left(60 \cdot 2,5 \cdot 2^{2}\right) \\ & C o \sim \mathrm{~N}\left(33 \cdot 9,6 \cdot 3^{2}\right) \\ & L \sim \mathrm{~N}\left(52 \cdot 4,4 \cdot 9^{2}\right) \end{aligned}$		When a candidate's answers suggest that (s)he appears to have neglected to use the difference columns of the Normal distribution tables, penalise the first occurrence only.	
(i)	$\begin{aligned} \mathrm{P}(C o<40)=\mathrm{P}\left(\mathrm{Z}<\frac{40-33 \cdot 9}{6 \cdot 3}\right. & =0.9683) \\ & =0.8336 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	For standardising. Award once, here or elsewhere. c.a.o.	3
(ii)	Want $\mathrm{P}(L>C a)$ i.e. $\mathrm{P}(L-C a>0)$ $\begin{aligned} & L-C a \sim \mathrm{~N}(52 \cdot 4-60 \cdot 2=-7 \cdot 8 \\ & \left.4 \cdot 9^{2}+5 \cdot 2^{2}=51 \cdot 05\right) \\ & \mathrm{P}(\text { this }>0)=\mathrm{P}\left(Z>\frac{0-(-7 \cdot 8)}{\sqrt{51 \cdot 05}}=1 \cdot 0917\right) \\ & \quad=1-0.8625=0.1375 \end{aligned}$	M1 B1 B1 A1	Allow $C a-L$ provided subsequent work is consistent. Mean. Variance. Accept sd $=\sqrt{ } 51 \cdot 05=$ 7•1449... c.a.o.	4
(iii)	$\begin{aligned} & \text { Want } \mathrm{P}\left(C a_{1}+C a_{2}+C a_{3}+C a_{4}>225\right) \\ & C a_{1}+\ldots \sim \mathrm{N}(60 \cdot 2+60 \cdot 2+60 \cdot 2+60 \cdot 2=240 \cdot 8, \\ & \left.5 \cdot 2^{2}+5 \cdot 2^{2}+5 \cdot 2^{2}+5 \cdot 2^{2}=108 \cdot 16\right) \end{aligned} \quad \begin{array}{r} \mathrm{P}(\text { this }>225)=\mathrm{P}\left(\mathrm{Z}>\frac{225-240 \cdot 8}{\sqrt{108 \cdot 16}}=-1 \cdot 519\right) \\ =0.9356 \end{array}$ Must assume that the weeks are independent of each other.	M1 B1 B1 A1 B1	Mean. Variance. Accept $s d=\sqrt{ } 108 \cdot 16=10 \cdot 4$. c.a.o.	5
(iv)	$\begin{aligned} & R \sim \mathrm{~N}(0 \cdot 05 \times 60 \cdot 2+0 \cdot 1 \times 33 \cdot 9+0 \cdot 2 \times 52 \cdot 4=16 \cdot 88, \\ & \left.0 \cdot 05^{2} \times 5 \cdot 2^{2}+0 \cdot 1^{2} \times 6 \cdot 3^{2}+0 \cdot 2^{2} \times 4 \cdot 9^{2}=1 \cdot 4249\right) \\ & \mathrm{P}(R>20)=\mathrm{P}\left(Z>\frac{20-16 \cdot 88}{\sqrt{1 \cdot 4249}}=2 \cdot 613\right) \\ & \quad=1-0 \cdot 9955=0.0045 \end{aligned}$	M1 A1 M1 M1 A1 A1	Mean. For $0 \cdot 05^{2}$ etc. For $\times 5 \cdot 2^{2}$ etc. Accept sd $=\sqrt{ } 1 \cdot 4249=1 \cdot 1937$. c.a.o.	6
				18

Q3				
(a) (i)	$\begin{aligned} & \mathrm{H}_{0}: \mu_{D}=0 \\ & \mathrm{H}_{1}: \mu_{D}>0 \end{aligned}$ Where μ_{D} is the (population) mean reduction in absenteeism. Must assume Normality of differences.	B1	Both. Accept alternatives e.g. $\mu_{D}<0$ for H_{1}, or $\mu_{A}-\mu_{B}$ etc provided adequately defined. Allow absence of "population" if correct notation μ is used, but do NOT allow " $\bar{X}=$..." or similar unless \bar{X} is clearly and explicitly stated to be a population mean. Hypotheses in words only must include "population".	4
(ii)	$\begin{aligned} & \text { Differences (reductions) (before }- \text { after) } \\ & 1 \cdot 7,0 \cdot 7,0 \cdot 6,-1 \cdot 3,0 \cdot 1,-0 \cdot 9,0 \cdot 6,-0 \cdot 7,0 \cdot 4,2 \cdot 7, \\ & \quad 0 \cdot 9 \\ & \bar{x}=0 \cdot 4364, s_{n 1}=1 \cdot 1518\left(s_{n 1}^{2}=1 \cdot 3265\right) \end{aligned}$ Test statistic is $\frac{0 \cdot 4364-0}{\left(\frac{1 \cdot 1518}{\sqrt{11}}\right)}$ $=1 \cdot 256(56 \ldots)$ Refer to t_{10}. Upper 5\% point is 1.812 . $1 \cdot 256<1 \cdot 812$, \therefore Result is not significant. Seems there has been no reduction in mean absenteeism.	B1 M1 A1 M1 A1 E1 E1	Allow "after - before" if consistent with alternatives above. Do not allow $s_{n}=1.098\left(s_{n}^{2}=1 \cdot 205\right)$. Allow c's \bar{x} and/or $s_{n 1}$. Allow alternative: $0 \pm$ (c's 1.812) \times $\frac{1.1518}{\sqrt{11}}(=-0.6293,0.6293)$ for subsequent comparison with \bar{x}. (Or $\bar{x} \pm\left(c^{\prime} \mathrm{s} 1.812\right) \times \frac{1.1518}{\sqrt{11}}(=-$ $0 \cdot 1929,1 \cdot 0657$) for comparison with 0.$)$ c.a.o. but ft from here in any case if wrong. Use of $0-\bar{x}$ scores M1A0, but ft. No ft from here if wrong. No ft from here if wrong. For alternative H_{1} expect -1.812 unless it is clear that absolute values are being used. ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	

(b)	For "days lost after" $\bar{x}=4 \cdot 6182, s_{n 1}^{\sim}=1 \cdot 4851\left(s_{n 1}^{2}=2 \cdot 2056\right)$ $\begin{aligned} & \text { CI is given by } 4.6182 \pm \\ & \qquad \begin{array}{l} 2 \cdot 228 \\ \\ \quad \times \frac{1.4851}{\sqrt{11}} \\ =4.6182 \pm 0.9976=(3 \cdot 620(6), 5 \cdot 615(8)) \end{array} \end{aligned}$	B1 M1 B1 M1 A1	Do not allow $s_{n}=1.4160\left(s_{n}{ }^{2}=\right.$ 2.0051). ft c 's $\bar{x} \pm$. $\mathrm{ft} \mathrm{c}^{\prime} \mathrm{s} \mathrm{s}_{\mathrm{n} 1}$. c.a.o. Must be expressed as an interval. ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0. Recovery to t_{10} is OK.	
	Assume Normality of population of "days lost after". Since $3 \cdot 5$ lies outside the interval it seems that the target has not been achieved.	E1 E1		7
				18

