Q1	$f(t) = kt^3(2-t)$ $0 < t \le 2$			
(i)	$\int_{0}^{2} kt^{3} (2-t) dt = 1$	M1	Integral of $f(t)$, including limits (possibly implied later), equated to 1.	
	$\therefore \left[k \left(\frac{2t^4}{4} - \frac{t^5}{5} \right) \right]_0^2 = 1$			
	$\therefore k \left(8 - \frac{32}{5} \right) - 0 = 1$			
	$\therefore k \times \frac{8}{5} = 1 \qquad \therefore k = \frac{5}{8}$	E1	Convincingly shown. Beware printed answer.	2
(ii)	$\frac{df}{dt} = \frac{5}{8} \left(6t^2 - 4t^3 \right) = 0$	M1	Differentiate and set equal to zero.	
	$\therefore 2t^2(3-2t) = 0$			
	$\therefore t = (0 \text{ or}) \frac{3}{2}$	A1	c.a.o.	2
(iii)	$E(T) = \int_{0}^{2} \frac{5}{8} t^{4} (2-t) dt$	M1	Integral for $E(T)$ including limits (which may appear later).	
	$= \left[\frac{5}{8} \left(\frac{2t^5}{5} - \frac{t^6}{6}\right)\right]_0^2 = \frac{5}{8} \times \left(\frac{64}{5} - \frac{64}{6}\right) = \frac{4}{3}$	A1		
	$E(T^{2}) = \int_{0}^{2} \frac{5}{8} t^{5} (2-t) dt$	M1	Integral for $E(T^2)$ including limits (which may appear later).	
	$= \left[\frac{5}{8}\left(\frac{2t^{6}}{6} - \frac{t^{7}}{7}\right)\right]_{0}^{2} = \frac{5}{8} \times \left(\frac{128}{6} - \frac{128}{7}\right) = \frac{40}{21}$			
	$\operatorname{Var}(T) = \frac{40}{21} - \left(\frac{4}{3}\right)^2 = \frac{120 - 112}{63} = \frac{8}{63}$	M1 A1	Convincingly shown. Beware printed answer.	5
(iv)	$\overline{T} \sim N\left(\frac{4}{3}, \frac{8}{63n}\right)$	B1 B1 B1	Normal distribution. Mean. ft c's $E(T)$. Correct variance.	3

Mark Scheme

cheme	June 2007

$s_{n-1}^{2} = \frac{223 \cdot 41 - 100 \times 1 \cdot 452^{2}}{99} = 0 \cdot 12707$ CI is given by $1 \cdot 452 \pm 1 \cdot 96$ $0 \cdot 3565$ B1 Both mean and variance. Accept sd = $0 \cdot 3565$ M1 ft c's $\bar{t} \pm .$ B1 M1 ft c's s_{n1} .	(v)	$n = 100, \bar{t} = \frac{145 \cdot 2}{100} = 1 \cdot 452,$			
CI is given by $1.452 \pm$ 1.96 0.3565 M1 ft c's $\overline{t} \pm$. B1 M1 ft c's s_{n1} .		$s_{n-1}^2 = \frac{223 \cdot 41 - 100 \times 1 \cdot 452^2}{99} = 0.12707$	B1	Both mean and variance. Accept sd = 0.3565	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		CI is given by $1.452 \pm$	M1	ft c's $\overline{t} \pm .$	
0.3565 M1 ft c's s_{n1} .		1.96	B1		
$\overline{\sqrt{100}}$		$\times \frac{0.3565}{\sqrt{100}}$	M1	ft c's s_{n1} .	
$= 1.452 \pm 0.0698 = (1.382, 1.522)$ A1 c.a.o. Must be expressed as an interval.		$= 1.452 \pm 0.0698 = (1.382, 1.522)$	A1	c.a.o. Must be expressed as an interval.	
Since $E(T)$ (= 4/3) lies outside this interval it seems the model may not be appropriate.E16		Since $E(T)$ (= 4/3) lies outside this interval it seems the model may not be appropriate.	E1		6
					18

(i) $P(Co < 40) = P(Z < \frac{40 - 33 \cdot 9}{6 \cdot 3} = 0.9683)$ $= 0.8336$ M1 A1For standardising. Award once, here or elsewhere. c.a.o.(ii)Want $P(L > Ca)$ i.e. $P(L - Ca > 0)$ $L - Ca ~ N(52 \cdot 4 - 60 \cdot 2 = -7 \cdot 8,$ M1 B1Allow $Ca - L$ provided subsequent work is consistent. B1	
$6 \cdot 3$ A1of elsewhere. $= 0.8336$ A1c.a.o.(ii)Want P(L > Ca) i.e. P(L - Ca > 0)M1 $L - Ca \sim N(52.4 - 60.2 = -7.8,$ B1M1Mean.	
(ii)Want $P(L > Ca)$ i.e. $P(L - Ca > 0)$ M1Allow $Ca - L$ provided subsequent work is consistent. $L - Ca \sim N(52.4 - 60.2 = -7.8)$ B1Mean.	3
(ii) Want $P(L > Ca)$ i.e. $P(L - Ca > 0)$ $L - Ca \sim N(52.4 - 60.2 = -7.8,$ M1 Allow $Ca - L$ provided subsequent work is consistent. B1 Mean.	
$L - Ca \sim N(52.4 - 60.2 = -7.8)$, B1 Mean.	
$4 \cdot 9^2 + 5 \cdot 2^2 = 51 \cdot 05$ B1 Variance. Accept sd = $\sqrt{51 \cdot 05} = 7 \cdot 1449$	
$P(\text{this} > 0) = P(Z > \frac{0 - (-7 \cdot 8)}{\sqrt{51 \cdot 05}} = 1.0917)$	
= 1 - 0.8625 = 0.1375 A1 c.a.o.	4
(iii) Want P($Ca_1 + Ca_2 + Ca_3 + Ca_4 > 225$) M1	
$Ca_1 + \dots \sim N(60.2 + 60.2 + 60.2 + 60.2 = 240.8)$, B1 Mean.	
$5 \cdot 2^2 + 5 \cdot 2^2 + 5 \cdot 2^2 = 108 \cdot 16$ B1 Variance. Accept sd= $\sqrt{108 \cdot 16} = 10 \cdot 4$.	
$P(\text{this} > 225) = P(Z > \frac{225 - 240 \cdot 8}{\sqrt{108 \cdot 16}} = -1.519)$	
= 0.9356 A1 c.a.o.	
Must assume that the weeks are independent of each other.	5
(iv) $R \sim N(0.05 \times 60.2 + 0.1 \times 33.9 + 0.2 \times 52.4 = 16.88, M1$ Mean.	
$0.05^2 \times 5.2^2 + 0.1^2 \times 6.3^2 + 0.2^2 \times 4.9^2 = 1.4249$ M1 For 0.05^2 etc.	
$M1 For \times 5 \cdot 2^2 \text{ etc.}$	
A1 Accept sd = $\sqrt{1.4249} = 1.1937$.	
$P(R > 20) = P(Z > \frac{20 - 16 \cdot 88}{\sqrt{1 \cdot 4249}} = 2.613)$	
= 1 - 0.9955 = 0.0045 A1 c.a.o.	6
	18

Q3				
(a) (i)	$ H_0: \mu_D = 0 H_1: \mu_D > 0 $	B1	Both. Accept alternatives e.g. $\mu_D < 0$ for H ₁ , or $\mu_A - \mu_B$ etc provided adequately defined	
	Where μ_D is the (population) mean reduction in absenteeism.	B1	Allow absence of "population" if correct notation μ is used, but do NOT allow " $\overline{X} =$ " or similar unless \overline{X} is clearly and explicitly stated to be a <u>population</u> mean. Hypotheses in words only must include "population"	
	Must assume Normality of differences.	B1 B1		4
(ii)	Differences (reductions) (before – after) 1·7, 0·7, 0·6, –1·3, 0·1, –0·9, 0·6, –0·7, 0·4, 2·7, 0·9		Allow "after – before" if consistent with alternatives above.	
	$\overline{x} = 0.4364, \ s_{n1} = 1.1518 \ (s_{n1}^2 = 1.3265)$	B1	Do not allow $s_n = 1.098 \ (s_n^2 = 1.205).$	
	Test statistic is $\frac{0.4364 - 0}{\left(\frac{1.1518}{\sqrt{11}}\right)}$	M1	Allow c's \overline{x} and/or s_{n1} . Allow alternative: $0 \pm (c's 1.812) \times \frac{1.1518}{\sqrt{11}} (= -0.6293, 0.6293)$ for subsequent comparison with \overline{x} . (Or $\overline{x} \pm (c's 1.812) \times \frac{1.1518}{\sqrt{11}} (= -0.1929, 1.0657)$ for comparison with	
	= 1.256(56)	A1	0.) c.a.o. but ft from here in any case if wrong. Use of $0 - \overline{x}$ scores M1A0, but ft.	
	Refer to t_{10} . Upper 5% point is 1.812.	M1 A1	No ft from here if wrong. No ft from here if wrong. For alternative H_1 expect -1.812 unless it is clear that absolute values are being used.	
	 1.256 < 1.812, ∴ Result is not significant. Seems there has been no reduction in mean absenteeism. 	E1 E1	ft only c's test statistic. ft only c's test statistic. Special case: (t_{11} and 1.796) can score 1 of these last 2 marks if either form of conclusion is given.	7

June 2007

(b)	For "days lost after"			
	$\overline{x} = 4 \cdot 6182, \ s_{n1} = 1 \cdot 4851 \ (s_{n1}^2 = 2 \cdot 2056)$	B1	Do not allow $s_n = 1.4160 (s_n^2 = 2.0051)$	
		N/1	2.0031).	
	CI is given by $4.6182 \pm$	MII	ft c's $x \pm d$.	
	2.228	B1		
	$\times \frac{1 \cdot 4851}{3}$	M1	ft c's s_{n1} .	
	$\sqrt{11}$			
	= 4.6182 ± 0.9976 = (3.620(6), 5.615(8))	A1	c.a.o. Must be expressed as an interval.ZERO if not same distribution as test. Same wrong distribution scores maximum M1B0M1A0.	
			Recovery to t_{10} is OK.	
	Assume Normality of population of "days lost after".	E1		
	Since 3.5 lies outside the interval it seems that the target has not been achieved.	E1		7
				18

Q4									
(i)									
(-)	Obs	21	24	12	15	13	9	6	
	Exp	26.53	17.22	20.25	11.00	10.94	8.74	5.32	
	LAP	20.55	17 22	20 25	M1	Drobabil	107	5.52	
						All Eve	100.	naios correct	
	(21	$2(52)^2$			AI	Ап Ехр	ecteu freque	cheles contect.	
	$\therefore X^2 = \frac{(21)}{2}$	$\frac{-26\cdot 53}{+}$	etc		M1				
		26.53					At loost 4 values correct		
	= 1.1527 +	2.6695 + 3.3	3611 + 1	$\cdot 4545 + 0.3879$	Al	At least	rrect.		
	+ 0.007	7+0.0869							
	= 9.1203				A1				
	d.o.f. = 7 - 1 = 6								
	Refer to χ_6^2	•			M1	No ft from here if wrong.			
	Upper 5% point is 12.59 9.1203 < 12.59 \therefore Result is not significant. Evidence suggests the model fits the data at the					No ft from here if wrong. ft only c's test statistic. ft only c's test statistic.			
									9
	5% leve		110401 110	s ino auta at in		it only c	b tobt btatib		Í
	570 1000								
(ii)									
(11)	Data	Diff = data	1-124	Rank of diff	M1	For diffe	erences		
	239	115	121	9	M1	For rank	s of differe	ence	
	77	_47		3		All corre	ect		
	179	55		4		ft from l	oere if ranks	wrong	
	221	97		7		It HOIII I	lere ii ranke	, wrong.	
	100	-24		2					
	312	188		10					
	52	-72		5					
	129	5		1					
	236	112		8					
	42	-82		6					
	$W_{-} = 3 + 2$	+5+6=16	1		B1	Or $W_+ =$	9 + 4 + 7 +	10 + 1 + 8 = 39)
	Refer to W	ilcoxon sing	le sample	e (/paired)	M1	No ft fro	om here if w	rong.	
	tables for n	= 10.	-					-	
	Lower two-	tail 10% po	int is		M1A1	Or, if 39 used, upper point is 45.			
	10.				No ft fro	om here if w	rong.		
	16 > 10 ∴	Result is no	t signific	cant.	E1	Or 39 < 45.			
			8			ft only c	's test statis	tic.	
	Seems there is no evidence against the median				E1	ft only c	's test statis	tic.	9
	length b	eing 124.	C						
	0	U							
									18
					1				

PMT